Bu eğitim, veri bilimi (data science) ve yapay us (yapay zeka - artificial intelligence) konularını Python diliyle anlatmaktadır. Her ne denli dil olarak Python seçildiyse de anlatılanların çoğu öteki diller için de geçerlidir. Dahası, öteki dillerde veri bilimi ve yapay us konularında çalışmak isteyenler için de Python ile başlamak, bu dilin göreli olarak daha kolay olması nedeniyle iyi bir başlangıç noktası olabilir.
Numpy ve Matplotlib ile Sayısal İşlemler ve Görselleştirme
Gerek veri bilimi gerek yapay us, sayılarla çalışmayı gerekli kıldığı için Pyhton dilindeki Numpy kütüphanesi öğrenilmelidir. Bu betiklikte(kütüphanede) olağan uzbilim (matematik) konuları için gereken sayısal işlemler bulunmaktadır. Numpy, yalnızca sayı ilgili değil, sayı dışındaki temel türlerle ilgili işlemleri içermektedir. Verilerle çalışmanın temellerini içerir.
Yapılan işlemleri daha anlaşılır biçimde inceleyebilmek için de matplotlib adı verilen görselleştirme (visualization) kütüphanesi kullanılır. Bu biçimde öğrencinin üzerinde çalıştığı veriyi daha iyi anlaması ve ona hakim olması sağlanır. Bu kütüphane aynı zamanda sonuçlarını sunulması ve yazanak (report) oluşturmak için gereklidir. Veri bilimiyle üretilen sonuçların bir biçimde akademik ya da iş dünyasına sonuç olarak sunulması gerekir.
Eğitimde Requests adı verilen HTTP iletişim kuralı üzerinden örün (web) içeriğini edinmeye yarayan bir betiklikte (kütüphanede) anlatılmaktadır. Bununla örün(web) üzerindeki içerikleri indirip üzerinde işlemler yapılabilmesi sağlanmaktadır. Var olan, hazır olarak sağlanan verilerle çalışmak yerine gerçek ve diri veri toplamanın yolları anlatılmaktadır.
Eğitim boyunca, düzenek öğrenmesi (machine learning) ve sayımbilim (statisitics) gibi konularda işlenecek verilerin dosyalardan okunması, üzerinde işlem yapılması ve görselleştirilmesine ilişkin örnekler yapılmaktadır.
Scipy ve Pandas ile Bilimsel İşlemler ve Veri İşleme
Temel matematik konularının ötesinde bilimsel konularda bir çok işlev içeren Scipy betikliğinin (kütüphanesinin) de bilinmesi gerekir. Burada science (bilim) ile denmek istenen doğal bilimler (natural sciences) olarak anlaşılmalıdır. Çünkü science sözcüğü tek başına kullanıldığında 'fen' anlamına gelmektedir. Scipy kütüphanesi Numpy kütüphanesini kullanır. Özel işlemler, türev (derivative) ve bütünlev (integral), içucaylama (interpolation), hızlı Fourier dönüşümü (fast Fourier transform), uzaysal yapılar ve algoritmalar (spatial structures & algorithms), sayımbilim (statistics) gibi konuları içerir. Bunlar hemen her yerde kullanılan matematik içeren yöntemlerdir.
Bilimsel konuların daha iyi anlaşılması için lisans düzeyinde matematik konuları gerekmektedir. Yer yer yetersiz kalındığı yerlerde yüksek matematik konularında da girilmektedir.
Eğitimde veri kümeleri edinilerek üzerinde türlü bilimsel işlem uygulanmakta ve sonuçlar görsel olarak incelenmektedir. Bu bölümde herhangi bir algoritmaya girmeden, birden çok algoritmada kullanılan temel bilimsel işlevlere yönelik uygulamalar yapılmaktadır.
Örnek Proje
Eğitim tümüyle uygulamalı yapılmaktadır. Her bölümde bir proje geliştirme için gerekli konular uygulamalı olarak örnek üzerinde anlatılmaktadır. Ancak eğitimin sonunda de her katılımcıya, anlatılanları içerdiği gibi kursun ötesinde de konulara girebileceği örnek bir proje verilmekte ve bu konuda öğrenciye destek olunmaktadır.
Bu konularda ayrıntılı bilgi, kurs, özel ders, uzaktan eğitim, ödev ve proje destek, kitap ve video için tıklayın :
Python Business Intelligence, Data Science ve Machine Learning